
			NovaVGA	
			Reference	Manual	 	

www.micro-nova.com	

		
		

	

©	2015	MicroNova	LLC	
www.micro-nova.com	 	

OVERVIEW	
	
NovaVGA	is	a	low-cost	shield	board	for	the	Arduino	
that	provides	an	easy-to-use	VGA	graphics	output.	The	
adapter	is	controlled	via	a	simple	SPI	interface	from	
the	Arduino	(or	any	SPI-compatible	microcontroller.)	
NovaVGA	keeps	a	160x120	pixel	frame	buffer	in	SRAM	
and	outputs	it	to	a	monitor	at	an	industry	standard	
640x480	@	60Hz	VGA	signal.	Meanwhile,	the	
microcontroller	is	free	to	write	to	the	SRAM	frame	
buffer	at	any	time	via	the	SPI	interface.	An	Arduino	
library	is	provided	with	several	examples.	

SPECIFICATIONS	
	

• Arduino	Uno	shield	form-factor	
• 160x120	pixels	@	6-bit	color	video	buffer	

(2^6	=	64	possible	colors)	
• 640x480	@	60Hz	physical	resolution		

(25.175MHz	pixel	clock)	
• Controlled	via	standard	SPI	mode	1	interface		

(consumes	only	three	Arduino	pins!)	
• Arduino	library	with	examples:	color	palette,	

Mandelbrot,	Tetris	and	text	console	
• Hardware	powered	by	a	Xilinx	XC9572XL	CPLD.	

	(User	modifiable	via	JTAG	interface).	

GETTING	STARTED	
	
All	of	the	required	pins	are	labeled	on	the	NovaVGA	board.		A	5V	power	input	is	required,	along	with	
SCK,	CSN,	and	MOSI	for	SPI	communication.		If	using	an	Arduino	Uno,	all	of	the	NovaVGA	pins	line	up	
with	the	proper	Arduino	pins,	and	NovaVGA	can	be	plugged	directly	into	the	Arduino.	
	
An	Arduino	library	is	provided	at	www.micro-nova.com.		
See	the	next	page	for	a	listing	of	some	of	the	available	functions:	
	
	
	

Figure	1	-	NovaVGA	board	

Figure	2	-	Mandelbrot	set	on	NovaVGA	

	 NOVAVGA	REFERENCE	MANUAL	 2	of	3	
		 	

	

©	2015	MicroNova	LLC	
www.micro-nova.com	 	 Page	2	of	3	

	

LIBRARY	FUNCTIONS	
	

void NovaVGA.init(uint8_t cspin)

	 Initialize	the	NovaVGA	module.	Chip	select	pin	specified	by	cspin.	(For	Arduino	Uno,	this	is	pin	10.)

void NovaVGA.writePixel(uint8_t x, uint8_t y, uint8_t color)

	 Write	a	pixel	to	the	specified	coordinate	(x,y).	Top-left	is	(0,0),	bottom-right	is	(159,	119).	
	 Color	is	byte	where	bits[5:4]	are	RED,	bits[3:2]	are	GREEN,	and	bits[1:0]	are	BLUE.	Bits[7:6]	unused.

void NovaVGA.writePixel(Point p, uint8_t color)

 Write	a	pixel	to	the	specified	coordinate	at	point	p.

void NovaVGA.fillScreen(uint8_t color)

	 Fill	the	screen	with	a	specified	color.

void NovaVGA.fillRect(uint8_t x, uint8_t y, uint8_t w, uint8_t h, uint8_t color)

	 Draw	a	filled	rectangle	at	the	specified	coordinates.	
	 Where:	x	=	left	coordinate,	y	=	top	coordinate,	w	=	width	of	rectangle,	h	=	height	of	rectangle

void NovaVGA.fillRect(Rect r, uint8_t color)

	 Draw	a	filled	rectangle	at	the	specified	coordinates.		
	 Where:	r	=rectangle	coordinates.	

void NovaVGA.drawChar(const char *bitmap, uint8_t x, uint8_t y, uint8_t color)

	 Draw	a	letter	at	the	specified	location	(x,y).		
	 Pointer	*bitmap	points	to	a	8x8	array	with	character	ROM.

void NovaVGA.drawChar(char ch, Point p, uint8_t color)

	 Draw	a	letter	at	the	specified	location	(p).		
	 Character(ch)	is	an	ASCII	byte.

void NovaVGA.drawChar(char ch, uint8_t x, uint8_t y, uint8_t color)

	 Draw	a	letter	at	the	specified	location	(x,y).		
	 Character(ch)	is	an	ASCII	byte.

void NovaVGA.drawString(const String str, uint8_t x, uint8_t y, uint8_t color)

	 Draw	a	string	at	the	specified	location	(x,y).	Newline	characters	"\n"	are	supported.

void NovaVGA.drawString(const String str, Point p, uint8_t color)

	 Draw	a	string	at	the	specified	location	(p).	Newline	characters	"\n"	are	supported.

	 NOVAVGA	REFERENCE	MANUAL	 3	of	3	
		 	

	

©	2015	MicroNova	LLC	
www.micro-nova.com	 	 Page	3	of	3	

	

THEORY	OF	OPERATION	
	
At	the	heart	of	NovaVGA	is	a	CPLD	that	acts	as	a	VGA	graphics	controller	at	640x480	@	60Hz	physical	
resolution.	Timing	is	provided	by	a	25.175MHz	crystal	oscillator.	The	CPLD	is	connected	to	an	SRAM	
which	acts	as	a	display	buffer.	While	the	unit	is	powered,	the	contents	of	the	SRAM	are	continuously	
displayed	to	the	monitor	at	a	160x120	effective	resolution.	Meanwhile,	the	SRAM	is	seamlessly	
multiplexed	with	a	SPI	receiver,	allowing	the	attached	Arduino	(or	other	SPI-capable	microcontroller)	to	
write	into	the	SRAM	via	SPI.		
	
In	each	SPI	transfer,	three	bytes	are	sent:	color,	X	coordinate	and	Y	coordinate.	The	color	is	6-bits,	in	the	
format	RRGGBB,	with	the	top	two	bits	of	the	byte	over	SPI	ignored.	Valid	X	coordinates	range	from	0	to	
159,	while	valid	Y	coordinates	range	from	0	to	119.	The	coordinate	plane	starts	with	(0,0)	in	the	upper	
left-hand	corner.		
	
Below	is	a	diagram	illustrating	the	SPI	timing.	Three	bytes	are	sent	MSB-first	in	SPI	mode	1	(CPOL	=	0,	
CPHA	=	1).	The	microcontroller	(SPI	master)	shifts	out	data	on	the	rising	SCLK	edge,	while	the	NovaVGA	
(SPI	slave)	shifts	in	data	on	the	falling	SCLK	edge.	
	

	
Figure	3	-	SPI	waveform	

Below	is	a	key	snippet	of	source	from	the	Arduino	library	that	shows	how	a	pixel	is	sent	to	the	NovaVGA:	
	
 SPI.beginTransaction(SPISettings(8000000, MSBFIRST, SPI_MODE1));
 digitalWrite(cspin_, LOW); // Assert chip select
 SPI.transfer(color); // Send in the coordinates and color via SPI
 SPI.transfer(x);
 SPI.transfer(y);
 digitalWrite(cspin_, HIGH); // Deassert chip select
 SPI.endTransaction(); // Release the SPI bus	
	
While	the	SPI	CSN	pin	is	asserted	(logic	level	low),	the	SPI	receiver	implemented	inside	the	NovaVGA	
CPLD	is	enabled	and	the	bytes	can	be	shifted	into	NovaVGA.	After	the	bytes	are	shifted	in,	when	SPI	CSN	
is	released	(logic	level	high),	the	specified	pixel	is	then	written	into	the	SRAM.	The	video	output	is	
registered	such	that	writes	into	the	SRAM	do	not	disturb	the	video	display.	
	
	

